Weighted variable exponent Sobolev estimates for elliptic equations with non-standard growth and measure data
نویسندگان
چکیده
منابع مشابه
A Priori Estimates for Elliptic Equations in Weighted Sobolev Spaces
In this paper we prove some a priori bounds for the solutions of the Dirichlet problem for elliptic equations with singular coefficients in weighted Sobolev spaces. Mathematics subject classification (2010): 35J25, 35B45, 35R05.
متن کاملNon-homogeneous semilinear elliptic equations involving critical Sobolev exponent
where λ > 0 is a parameter, κ ∈ R is a constant, p = (N + 2)/(N − 2) is the critical Sobolev exponent, and f(x) is a non-homogeneous perturbation satisfying f ∈ H−1(Ω) and f ≥ 0, f ≡ 0 in Ω. Let κ1 be the first eigenvalue of −Δ with zero Dirichlet condition on Ω. Since (1.1)λ has no positive solution if κ ≤ −κ1 (see Remark 1 below), we will consider the case κ > −κ1. Let us recall the results f...
متن کاملAnisotropic quasilinear elliptic equations with variable exponent
We study some anisotropic boundary value problems involving variable exponent growth conditions and we establish the existence and multiplicity of weak solutions by using as main argument critical point theory. 2000 Mathematics Subject Classification: 35J60, 35J62, 35J70.
متن کاملWeighted Sobolev Spaces and Degenerate Elliptic Equations
In the case ω = 1, this space is denoted W (Ω). Sobolev spaces without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is “disturbed” in the sense that some degeneration or singularity appears. This “bad” behaviour can be caused by the coefficient...
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA
سال: 2018
ISSN: 1021-9722,1420-9004
DOI: 10.1007/s00030-018-0520-z